用三个数字计算 6 的问题

前两天有同事在群里发了一个数学题,如下:

请添加运算符,使下面的等式成立:

1 1 1 = 6
2 2 2 = 6
3 3 3 = 6
4 4 4 = 6
5 5 5 = 6
6 6 6 = 6
7 7 7 = 6
8 8 8 = 6
9 9 9 = 6

1 ~ 3 很容易想到:

$$(1 + 1 + 1)! = 6$$
$$2 + 2 + 2 = 6$$
$$3 * 3 – 3 = 6$$

其中 n! 是阶乘。

三个 4 那儿想了一会儿:

$$\sqrt{4} + \sqrt{4} + \sqrt{4} = 6$$

后面的 5、6、7 也比较简单:

$$5 + 5 \div 5 = 6$$
$$6 + 6 – 6 = 6$$
$$7 – 7 \div 7 = 6$$

三个 8 那儿卡了好一会儿,最后想到了很久之前看到的双阶乘,有:

$$8!! = 2 * 4 * 6 * 8$$

于是有:

$$8!! \div 8 \div 8 = 6$$

最后一个三个 9:

$$\sqrt{9} * \sqrt{9} – \sqrt{9} = 6$$

后来在 stackexchange 上看到一些老外对这个问题的解答,其中三个 8 那儿有一些更好(使用常见运算)的方法,比如:

$$(\sqrt{8 + 8 \div 8})! = 6$$
$$8 – \sqrt{\sqrt{8 + 8}} = 6$$

“用三个数字计算 6 的问题”的3个回复

  1. 这儿有个更好玩的app叫做Tchisla和它的解题答案:https://mathsfans.github.io/Tchisla/,比如用最少的8算出50的计算方式是50=√(√(√8+√8+√(√√(8+8)))^8)……

  2. 大佬牛逼!!!偶然间在一个网站的js文件里看见大佬的博客,希望抽空能多发点有趣的文章。

发表评论

电子邮件地址不会被公开。 必填项已用*标注